はじめに

靴たちの暮らしに欠かすことができないエネルギーは、 若漁、 若筬、 突然ガス、ウラン、 太陽光や嵐などから全み出されています。

日本は国内で取れるエネルギー資源が非常に少なく、世界各地からの輸入にたよっています。

エネルギーは、靴たちの暮らしにとって非常に重要で、必要であるのはもちろんのこと、工業や経済にも大きく関わるため、もしも、世界からの輸入がなくなってしまったら、靴たちの暮らしは成り立ちません。

また、値段が大きく上がってしまったら、企業も生活者も苦しい状況に追い込まれてしまいます。エネルギーは、生活に必ず必要なものであって、ぜいたく品ではないので、値段を安く抑えることはとても大事なのです。

この本では、日本のエネルギー資源の現状と、中でも生活に身近な電気エネルギーについて学びながら、世界各国のエネルギー資源についても学習していきます。

理想的なエネルギーはありません。すべてのエネルギーや発電方法に、食い節、

多様なエネルギーや発電方法を組み合わせて使うことが必要ですが、その前提としてそれぞれの特徴を学んでいきましょう。

日本のエネルギーの未来について、みなさんが考えるきっかけにしてください。

この茶の使い芳

この本では、説前交の補助として絵や図をたくさん使っています。エネルギーの話は多し難しい部分があるので、よりみなさんが理解しやすくなる工業がしてあります。順番に読み進めていけば、エネルギーの全体像をつかみ、さらに細かい内容まで理解できるようになっています。

Let's try!

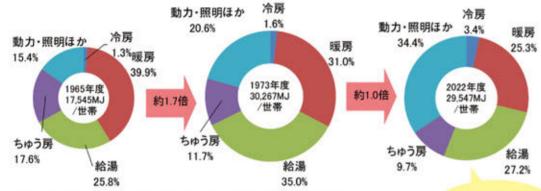
本を読み進めなが ら、調べたり、観 察したりする提案 のコーナーです。

本の内容に関係していて、さらに知りたくなる内容をのせています。

∮ もくじ

●はじめに・・・・・・2
日本と世界のエネルギー資源・・・・・・・・・・4
日本のエネルギー事情・・・・・・・・・・・・・・・・・6
日本のエネルギーの現状8
日本のエネルギーの歴史10
これからエネルギーの主役は電気になるの?12
電気が届くまでの長い道のり・・・・・・14
火力発電所のしくみ16
火力発輸の問題点は?18
さまざまな形で利角される关熱ガス20
パイプライン、タンカーで運ばれる关熱ガス21
原子力発電所のしくみ・・・・・・22
原学光とは・・・・・・23
放射性物質と放射線24
原子方の問題流・・・・・・25
原子为発電所の事故と影響・・・・・・・・・・27
世界のエネルギー資源・・・・・・・28
アメリカ・・・・・・29
ヨーロッパの国令30
ロシア・・・・・・・・・31
党第 · · · · · · 32
インド・・・・・・・・・33
中国 · · · · · · · 34
オーストラリア・・・・・・35
まとめ36
● おわりに・・・・・・37
●さくいん・・・・・・38

 $\mathbf{4}$


日本のエネルギー事情

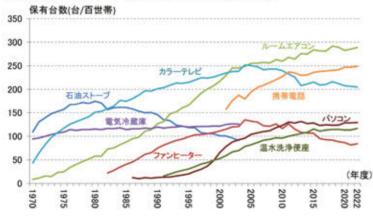
戦後、経済が発展するとともに日本のエネルギー消費量は増えてきましたが、 2000年以降からは横ばい、あるいは少しずつ減る芳尚にあります。

タ家庭でのエネルギー消費

日本の家庭でのエネルギー消費量は全体消費量の15%です(2022年)。ライフスタイルの変化で、1973年の消費量は、1965年の1.7倍、2005年には2倍以上に増えました。その後、省エネ技術が普及し、2022年には1973年と簡じくらいになっています。

■世帯当たりのエネルギー消費原単位と用途別エネルギー消費の推移

(注) 「総合エネルギー統計」は、1990年度以降、数値の算出方法が変更されている。


出典:経済産業省「エネルギー白書2024」(図【第212-2-5】)

資料: 資源エネルギー庁 「総合エネルギー統計」、総務省 「住民基本台帳に基づく人□、人□動態及び世帯数」、日本エネルギー経済研究所「エネルギー・経済統計要覧」を基に作成

動力・照明ほかと冷房の 占める割合は、1965年の 2倍以上になっているね

若論を燃やす若論ストーブやファンヒーターが減って、電気で冷暖房を行うルームエアコンの保着台数が増えています。また、1990年代からバソコンや温水洗浄使座などの普及が進んでいます。

■家庭用のエネルギー消費機器の保有状況の推移

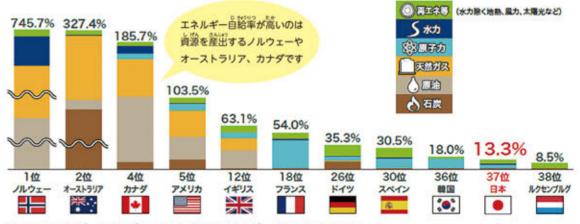

(注) カラーテレビのうち、ブラウン管テレビは2012年度調査で終了。

出典:経済産業省「エネルギー白書2024」(図【第212-2-3】) 資料: 内閣府「消費動向調査 (二人以上の世帯)」を基に作成

夕産業でのエネルギー消費

日本は、自動車や鉄などを製造して海外に売っており、エネルギーの消費が最も勢いのは製造業です。1960年代にエネルギーの主役が若競から若漁へ変わりましたが、1970

年代の若油危機を経て、 省エネと原子ガや关然ガスなどへの多角化が進め られました。

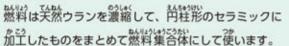


海外に輸出されるたくさんの自然軍

▼日本のエネルギー自給率は"13.3%"

自業は化若燃料への依存度が高く、さらに若論・若炭・关熱ガスのほとんどを海外から輸入しているので、エネルギー自給率は13.3%と低いです。エネルギー自給率は、資源がなくても原子労を活用しているフランスや韓国、再生可能エネルギーを活用しているドイツやスペインのように、国によってそれぞれ特徴があります。

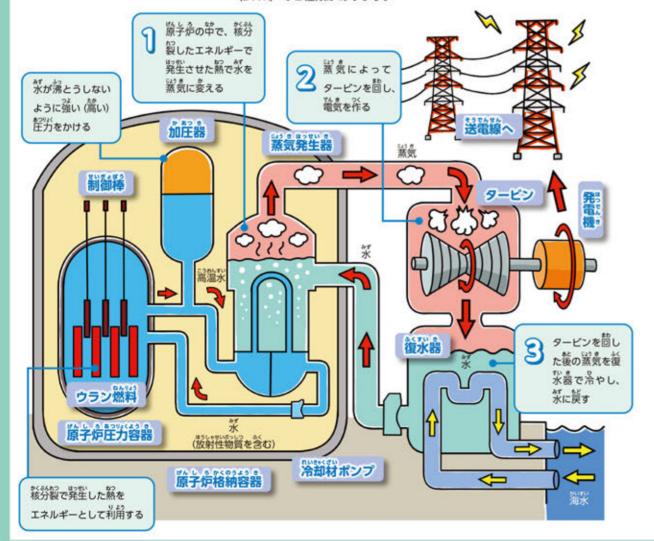
■主要国の一次エネルギー自給率比較(2021年)


出典: 資源エネルギー庁 広報パンフレット「日本のエネルギー (2024年2月発行)」

IEA「World Energy Balances 2022」の2021年推計値、日本のみ資源エネルギー庁「総合エネルギー統計」の2021年度確報値。 ※表内の順位はOECD38カ国中の順位

原子力発電所のしくみ

ウランという物質を燃料として、核分裂を起こして出るエネルギーを使って発電する方法です。2011年の東日本大震災以降、発電量が減りましたが、事故を契機とした姿全対策工事が行われて、工事が済んだ発電所が稼働を再開しています。


原子力発電の燃料・ウラン

加圧水型原子炉の場合

原子力発電所には主に加圧水型原子炉 (PWR) と沸騰水型原子炉 (BWR) の2種類があります。

原子力とは

原子力によってエネルギー自給率が上がるわけ

日本は、原子力発電に用いるウラン燃料を海外から輸入しています。しかし、 原子力は「準国産のエネルギー」として扱われます。

ます。オイルショックなどの事態が生じても、長期間国内でエネルギーをまかなうことができるため、こくまいてき 国際的なルールとして、原子力はエネルギーの自給率にカウントしてよい、とされているのです。

23

放射性物質と放射線

原子分発電はウランの核分裂によって大きなエネルギーを生み出し発電する一方で、 原子炉の中には大量の放射性物質が出ます。放射性物質は、放射線を出します。

放射線って?

はたいでは、 放射線とは、放射性物質から出る、小さな粒子や電磁波のことです。 ちきゅう たんじょう とき もんがい 地球が誕生した時から存在しています。

医療での利用

レントゲンなど がかき しら 病気を調べたり もりょう 治療したりする ために使います。

農業での利用

日常生活で受ける放射線量

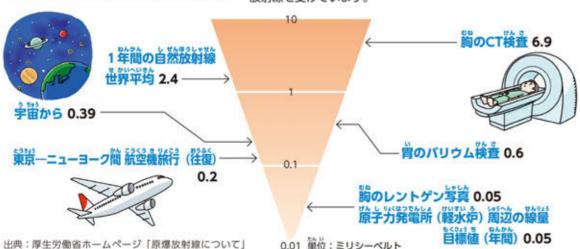
品質改良や、

後監保券の

ための穀蘭に

を基に作成

使います。


放射線は危険な面も ありますが、荒しく 利用すれば、私たちの サンデスを使利で響かにして くれます

放射線の 刹角

がいた はいまりせいかつ なか きがい た もの くうき うちゅう 私たちは日常生活の中で、機械や食べ物、空気や宇宙からも 取りしゃせん う 放射線を受けています。

原子力の問題点

原子光発電は、参ないウラン燃料で発きなエネルギーを生み、二酸化炭素を出さない 一方で、事故や放射性廃棄物などの問題も抱えています。

発電所事故のリスク

原子力発電所で事故が起こった場合、放射性物質が外に漏れてしまい、体や環境 に悪影響を及ぼす可能性があります。

チョルノービリ(チェルノブイリ)原子力発電所事故 きゅか 野の様子

※1986年にチョルノービリ(チェルノブイリ)原子力発電所で爆発事故が起き、大量の放射性物質が放出され、多くの人や環境に被 か。 客を与えました。

原子力発電の安全を求めて

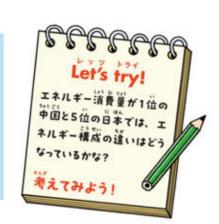
がきる 各地で起きた原子力発電所の事故を教 がた。 せかじゅう あんがいさく かほう もと 訓に、世界中で安全対策への対応が求め でんしょ じここ じい つなみ たつまき ごうう 雷所の事故後、地震や津波、竜巻、豪雨 などあらゆる自然災害や、テロに対して も対策を求めるなど、厳しい規制基準が まくてい 策定されました。

25

24

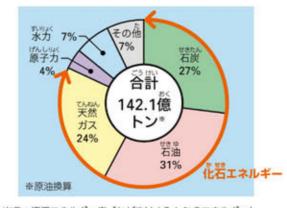

世界のエネルギー資源

主要国のエネルギー資源について見ていきましょう。エネルギー消費量には、地域性や気候なども関係しているようです。


ゲ世界のエネルギー消費、どこの国が一番多い?

白素は世界で第5位のエネルギー消費室となっています。上位は、中室、アメリカ、インド、ロシアで、これらの国は経済規模が大きく人口が多いため、エネルギー消費量も 第くなっています。

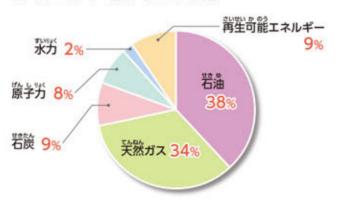
■世界全体のエネルギー消費量 国別内訳 (2021年)


出典: 資源エネルギー庁 「かがやけ! みんなのエネルギー」 資料: BP 「Statistical Review of World Energy 2022」を基に作成

∮世界で使われているエネルギー

世界全体のエネルギー消費量は、化若エネルギーが大半を占めています。若論は全に輸送や工業分野、若炭は発電や製鉄、矢然ガスは発電や暖房、工業分野で使われています。 北方発電や飼力発電、太陽光発電などの再生 可能エネルギーの消費量も増え始めています。 米材や農業廃棄物などの有機物を燃料として 利用するバイオマスエネルギー、ウランを燃料とする原子力も活用されています。

■世界全体のエネルギー消費量 資源別内訳 (2021年)


出典: 資源エネルギー庁「かがやけ! みんなのエネルギー」 資料: BP「Statistical Review of World Energy 2022」 を基に作成

アメリカ

世界で2番首にエネルギーの消費量が多いアメリカ。 近年はシェールオイルの採掘技術の開発により、若油の輸出気がとても盛んになりました。 また、シェールガスも採掘できることから、 突然ガスは世界最大の産出菌となり、世界中に輸出しています。

■一次エネルギー構成 (2023年度)

出典: 2024 Energy Institute Statistical Review of World Energy (エナジー・インスティチュート世界エネルギー統計レビュー)

エネルギートピック

アメリカでは、新しい原子力技術 (小型モジュール炉 (SMR) など) の 導入を進めると同時に、苦い原子 力発電所の運転期間延長も進めて います。安価で安定したエネルギー 供給によって、アメリカ内の産業 が有利になることを目指しています。

28